
Exercise 7.1 

The heat flux can be easily calculated with the given heating power (3 kW), efficiency (60%), 
and bottom surface area (30 cm diameter) of the pan, 

𝑞𝑞 = 3 × 103  ×  60% ÷ �
𝜋𝜋 × 0.32

4
� = 25478 𝑊𝑊 ∙ 𝑚𝑚−2 

As the pressure is 1 atm, the boiling point water 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 = 100℃. Then, the inner surface 
temperature can be estimated by the figure in Slide 6 or calculated using Equation 7.1 
knowing that ∆𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠. 

In the figure in Slide 6, with a boiling heat flux  𝑞𝑞 = ~2.5 × 104 𝑊𝑊/𝑚𝑚2, Δ𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 7℃ can 
be roughly estimated. Thus, the inner surface temperature of the pan 𝑇𝑇𝑠𝑠 = 107℃. 

Alternatively, with equation 7.1, at 100℃, the surface tension of liquid-vapor interface 𝜎𝜎 =
0.0589𝑁𝑁/𝑚𝑚, and for mechanically polished stainless steel, 𝐶𝐶𝑠𝑠𝑠𝑠 = 0.0130 and 𝑛𝑛 = 1.0. 
Together with all give physical properties of water, we have 

25477 = 0.282 × 10−3 × 2257 × 103 × �
9.81 × (957.9 − 0.6)

0.0589
�
1/2

× �
4217 × ∆𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

0.013 × 2257 × 103 × 1.75
� 

Δ𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 5.7℃ 

Thus, the inner surface temperature of the pan 𝑇𝑇𝑠𝑠 = 105.7℃. 

To estimate the temperature difference between the inner and outer surface of the pan, we 
consider 1-D Fourier’s law, 

𝑞𝑞 = −𝑘𝑘
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

With constant k, simple integration gives 

𝑞𝑞(𝑥𝑥2 − 𝑥𝑥1) = −𝑘𝑘∆𝑇𝑇 

Where 𝑥𝑥2 − 𝑥𝑥1 = 6 𝑚𝑚𝑚𝑚 (thickness of the pan). Thus,  

∆𝑇𝑇 =
25478 × 6 × 10−3

16.2
= 9.4℃ 

For effective h between the pan and the water, we know that 

𝑞𝑞 = ℎ(𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠) 

Thus, 



ℎ =
25478

5.7
= 4470 𝑊𝑊 ∙ 𝑚𝑚−2 ∙ 𝐾𝐾−1 

Exercise 7.2 
Given that 

𝐿𝐿𝑐𝑐 = 𝐿𝐿 +
𝑡𝑡
2

= 0.04 +
0.002

2
= 0.041𝑚𝑚 

𝐿𝐿𝑐𝑐 + 𝑟𝑟1
𝑟𝑟1

=
0.041 + 0.04

0.04
= 2.025 

𝐿𝐿𝑐𝑐(
ℎ
𝑘𝑘𝑘𝑘

)1/2 = 0.041 × � 30
200 × 0.002

= 0.355 

In the graph, we can find that 𝜂𝜂𝑓𝑓 = 0.88 

The surface area of the fin is 

𝐴𝐴 = 2[𝜋𝜋(𝐿𝐿 + 𝑟𝑟1)2 − 𝜋𝜋𝑟𝑟12] + 2𝜋𝜋(𝐿𝐿 + 𝑟𝑟1)𝑡𝑡 = 0.03115𝑚𝑚2 

Thus, the heat loss is 

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ℎ𝐴𝐴(𝑇𝑇𝑠𝑠 − 𝑇𝑇∞)𝜂𝜂𝑓𝑓 = 30 × 0.03115 × (523.2 − 343.2) × 0.88 = 148𝑊𝑊 



Exercice 7.3 

a) Le nombre de Biot vaut :

𝐵𝑖 =
ℎ𝐿

𝑘
=

15 ∗ 0.2

0.935
= 3.21 > 0.1 

Dans ce cas, il faut considérer le profil de température interne au système. 

Remarque 1 : dans le modèle décrit dans le cours, le flux de chaleur est nul au centre du 
système. Par conséquent les mêmes équations régissent le cas présenté ici, où un côté de la 
plaque est isolé, à condition de choisir le « centre » de la plaque au niveau du côté isolé dans 
le paramétrage du système. 

On utilise  les relations données pour une plaque mince : 

𝜃 (0, 𝑡) =
𝑇 (0, 𝑡) − 𝑇∞

𝑇𝑖 − 𝑇∞
=

50 − 100

20 − 100
= 0.625 

On a alors : 

𝐵𝑖 = 3.21 ⇔  {
𝜆1 = 1.2

𝐴 = 1.21

Et alors 

𝜃 (0, 𝑡) = 𝐴1𝑒−𝜆1
2𝜏

Donc 

𝜏 = −
1

𝜆1
2 ln (

𝜃

𝐴1
) 

𝜏 = −
1

1.22
ln (

0.625

1.21
) = 0.46 

Remarque 2: on peut retrouver cette valeur graphiquement sur la courbe donnée dans le 
cours 

Remarque 3 : 𝜏 > 0.2 donc n’utiliser que le premier terme de la série du développement de 𝜃 
est une bonne approximation. 

Alors 

𝑡 =
𝜏𝐿2

𝛼



Calcul de  : 

𝛼 =
𝑘

𝜌𝑐𝑝
=

0.935

2300 ∗ 840
= 4.84 ∗ 10−7 𝑚2. 𝑠−1 

Donc 

𝑡 =
0.46 ∗ 0.22

4.84 ∗ 10−7
= 38017 𝑠 = 𝟏𝟎𝒉 𝟑𝟒 𝒎𝒊𝒏 

b) Le transfert de chaleur à la paroi en contact avec l’air vaut :

𝑞 (𝑥 = 𝐿, 𝜏) = −𝑘
𝜕𝑇(𝑥, 𝜏)

𝜕𝑥
|

𝑥=𝐿

D’autre part : 

𝑇(𝑥, 𝜏) − 𝑇∞ = (𝑇𝑖 − 𝑇∞)𝐴1𝑒−𝜆1
2𝜏 cos (

𝜆1𝑥

𝐿
) 

Donc : 

𝜕𝑇(𝑥, 𝜏)

𝜕𝑥
= −

𝜆1

𝐿
(𝑇𝑖 − 𝑇∞) 𝐴1 sin (

𝜆1𝑥

𝐿
) 𝑒−𝜆1

2𝜏 

D’où 

𝜕𝑇(𝑥, 𝜏)

𝜕𝑥
|

𝑥=𝐿

= −
𝜆1

𝐿
(𝑇𝑖 − 𝑇∞) 𝐴1 sin(𝜆1) 𝑒−𝜆1

2𝜏

Soit : 

𝑞 (𝑥 = 𝐿, 𝜏) =
𝑘𝜆1

𝐿
(𝑇𝑖 − 𝑇∞) 𝐴1 sin(𝜆1) 𝑒−𝜆1

2𝜏

Pour obtenir la chaleur totale transmise au mur pendant le réchauffement, on intègre le flux 
instantané trouvé précédemment sur la durée du réchauffement : 

𝑞𝑡𝑜𝑡 = ∫
𝑘𝜆1

𝐿
(𝑇𝑖 − 𝑇∞) 𝐴1 sin(𝜆1)

0.46

𝜏=0

𝑒−𝜆1
2𝜏𝑑𝜏 



𝑞𝑡𝑜𝑡 =
𝑘

𝐿𝜆1

(𝑇∞ − 𝑇𝑖)𝐴1 sin(𝜆1) [𝑒−0.46 − 1]

Application numérique : 

𝑞𝑡𝑜𝑡 =
0.935

0.2 ∗ 1.2
∗ (100 − 20) ∗ 1.21 ∗ sin(1.2) [𝑒−0.46∗1.22

− 1]

𝒒𝒕𝒐𝒕 = −𝟑𝟏 𝑱. 𝒎−𝟐

Remarque : Le flux de chaleur est négatif, car le transfert de chaleur se fait dans la direction 
opposée à celle de l’axe des x 

Exercice 7.4 

a) Le nombre de Biot s’exprime :

𝐵𝑖 =
ℎ𝐿𝑐

𝑘

On peut choisir comme longueur caractéristique le rapport du volume de l’objet sur sa 
surface : 

𝐿𝑐 =
8𝑎3

28𝑎2
= 0.28𝑎 

Alors : 

𝐵𝑖 = 67.5 ∗ 0.28 ∗
0.2

220
= 0.017 < 0.1 

On est donc dans une situation où la résistance interne du matériau peut être négligée. On 
peut donc directement utiliser la relation : 

𝑇(𝑡) − 𝑇∞

𝑇𝑖 − 𝑇∞
= exp (−

ℎ𝐴

𝑉𝜌𝑐𝑝
 𝑡) 

Par conséquent : 

𝑡 =
𝑉𝜌𝑐𝑝

ℎ𝐴
 ln (

𝑇𝑖 − 𝑇∞

𝑇(𝑡) − 𝑇∞
) 

𝑡 =
8𝑎3𝜌𝑐𝑝

ℎ28𝑎2
 ln (

𝑇𝑖 − 𝑇∞

𝑇(𝑡) − 𝑇∞
) 



𝒕 =
𝟖𝒂𝝆𝒄𝒑

𝟐𝟖𝒉
 𝐥𝐧 (

𝑻𝒊 − 𝑻∞

𝑻(𝒕) − 𝑻∞
)

Application numérique : 

𝑡 =
8 ∗ 0.2 ∗ 2700 ∗ 870

28 ∗ 67.5
ln (

20 − 950

500 − 950
) = 1444 𝑠 

𝒕 = 𝟐𝟒 𝒎𝒊𝒏 

b) On peut négliger la résistance interne lorsque Bi < 0.1 :

0.28 ℎ𝑎

𝑘
< 0.1 ⟺ 𝑎 < 0.1 ∗

220

0.28 ∗ 67.5
 ⟺  𝒂 < 𝟏. 𝟏𝟒 𝒎 

Il faut donc que l’épaisseur du parallélépipède soit inférieure à 1.14 m. 





Exercice 7.6

Il faut calculer la chaleur rayonnée du sol vers les autres parois (petits murs, grands murs, et 
plafond). Comme toute chaleur émise du sol est forcément reçue par une des autres parois, 
et que toute les parois sont à la même température, on a directement 𝐹𝑠𝑜𝑙,𝑝𝑎𝑟𝑜𝑖𝑠 = 1 et : 

𝑄𝑟𝑎𝑑,𝑠𝑜𝑙 = 𝐴𝑠𝑜𝑙𝐹𝑠𝑜𝑙,𝑝𝑎𝑟𝑜𝑖𝑠𝜎𝑒(𝑇𝑠𝑜𝑙
4 − 𝑇𝑝𝑚

4 ) = 𝟕𝟓. 𝟏𝟖 𝒌𝑾

Remarque : si on voulait calculer la quantité de chaleur reçue par chacune des parois, on 
aurait les résultats suivants. 

- Petits murs :

Le facteur de vue entre le sol et un petit mur s’obtient graphiquement (cf cours) pour : 

𝑍

𝑋
= 0.47 𝑒𝑡

𝑌

𝑋
= 2 

On obtient alors : 

𝐹𝑠𝑜𝑙,𝑝𝑚 ≈ 0.08 

Alors : 

𝑄𝑟𝑎𝑑,𝑠𝑜𝑙,𝑝𝑚 = 2 ∗ 𝐴𝑠𝑜𝑙𝐹𝑠𝑜𝑙,𝑝𝑚𝜎𝑒(𝑇𝑠𝑜𝑙
4 − 𝑇𝑝𝑚

4 ) = 𝟏𝟐. 𝟎𝟑 𝒌𝑾

- Grands murs :

Le facteur de vue entre le sol et un grand mur s’obtient graphiquement (cf cours) pour : 

𝑍

𝑋
= 0.23 𝑒𝑡

𝑌

𝑋
= 0.5 

On obtient alors : 

𝐹𝑠𝑜𝑙,𝑔𝑚 ≈ 0.15 

Alors : 

𝑄𝑟𝑎𝑑,𝑠𝑜𝑙,𝑔𝑚 = 2 ∗ 𝐴𝑠𝑜𝑙𝐹𝑠𝑜𝑙,𝑔𝑚𝜎𝑒(𝑇𝑠𝑜𝑙
4 − 𝑇𝑔𝑚

4 ) = 𝟐𝟐. 𝟓𝟔 𝒌𝑾



- Plafond :

Le facteur de vue entre le sol et le plafond s’obtient graphiquement (cf cours) pour : 

𝑋

𝐷
= 4.28 𝑒𝑡

𝑌

𝐷
= 2.14 

On obtient alors : 

𝐹𝑠𝑜𝑙,𝑝𝑙𝑎𝑓𝑜𝑛𝑑 ≈ 0.5 

Alors : 

𝑄𝑟𝑎𝑑,𝑠𝑜𝑙,𝑔𝑚 = 𝐴𝑠𝑜𝑙𝐹𝑠𝑜𝑙,𝑝𝑙𝑎𝑓𝑜𝑛𝑑𝜎𝑒(𝑇𝑠𝑜𝑙
4 − 𝑇𝑝𝑙𝑎𝑓𝑜𝑛𝑑

4 ) = 𝟑𝟕. 𝟓𝟗 𝒌𝑾 

La somme des facteurs de vue est bien égale à 1, comme on l’a vu pour le premier calcul. 

Le flux de chaleur par convection s’obtient en calculant le nombre de Rayleigh (avec les 
valeurs de paramètres correspondant à de l’eau à 0°C) : 

𝑅𝑎𝐿 =
𝑔𝛽

𝜈𝛼
(𝑇𝑠𝑜𝑙 − 𝑇∞)𝐿3

𝑅𝑎𝐿 =
9.81 ∗ 3.6 ∗ 10−3

1.3 ∗ 10−5 ∗ 2.1 ∗ 10−5
∗ 35 ∗ 303 

𝑹𝒂𝑳 = 𝟏. 𝟐𝟐 ∗ 𝟏𝟎𝟏𝟒

Cette valeur est au-delà de la gamme donnée dans le cours pour une plaque horizontale, mais 
en l’absence de meilleur modèle, on supposera qu’il est toujours raisonnable d’utiliser la 
relation suivante : 

𝑁𝑢 = 0.15 𝑅𝑎𝐿

1
3 = 𝟕𝟒𝟒𝟒 

Et donc 

𝑄𝑐𝑜𝑛𝑣 =
𝑘𝑁𝑢

𝐿
𝐴(𝑇𝑠𝑜𝑙 − 𝑇∞) 

𝑸𝒄𝒐𝒏𝒗 = 𝟗𝟑. 𝟕𝟗 𝒌𝑾 

Donc au total il faudrait fournir au total 168.33 kW de puissance thermique au sol pour 
compenser la perte de chaleur. 



Exercice 7.7

On considère ici seulement la chaleur rayonnée du tuyau à haute température vers les tuyaux 
à basse température, et, contrairement à l’exercice 5.1, la somme des deux facteurs de vue 
ne sera pas égale à 1, puisqu’une partie de la chaleur irradiée n’atteindra jamais aucun des 
deux autres tuyaux.  

Dans la suite, l’indice 1 se rapporte au tuyau chaud du centre, l’indice 2 au tuyau froid le plus 
proche du tuyau chaud et l’indice 3 au tuyau froid le plus éloigné.  

On considère que tous les tuyaux ont la même émissivité 𝜖 = 0.59 (acier inox) 

Le flux de chaleur irradiée s’écrit : 

𝑄𝑟𝑎𝑑,𝑡𝑜𝑡 = 𝑄𝑟𝑎𝑑,12 + 𝑄𝑟𝑎𝑑,13 

𝑄𝑟𝑎𝑑,𝑡𝑜𝑡 = 𝜋𝐷𝐿(𝐹12 + 𝐹13)𝜎𝜖(𝑇1
4 − 𝑇2

4)

Avec 

𝐹𝑖𝑗 =
√ℎ2 − 4 − ℎ + 2 arcsin (

2
ℎ

)

2𝜋

Pour la radiation de 1 vers 2 : ℎ =
𝐻

𝑅
=

2

0.1
= 20 

𝐹12 =
√396 − 20 + 2 arcsin(0.1)

2𝜋
= 0.0159 

Pour la radiation de 1 vers 3 : ℎ =
𝐻

𝑅
=

5

0.1
= 50 

𝐹12 =
√2496 − 50 + 2 arcsin(0.04)

2𝜋
= 0.0064 

Donc : 

𝑄𝑟𝑎𝑑,𝑡𝑜𝑡 = 𝜋 ∗ 0.2 ∗ 10 ∗ 0.0223 ∗ 5.67 ∗ 10−8 ∗ 0.59 ∗ (7734 − 2934) 

𝑸𝒓𝒂𝒅,𝒕𝒐𝒕 = 1639 𝑾
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